+Ai2 CMU W

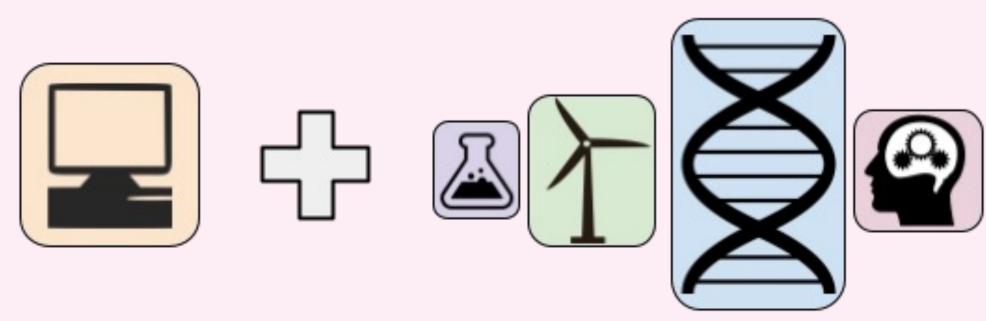
Scalable Data Ablation Approximations for Language Models through Modular Training and Merging

Clara Na^{1,2}, Ian Magnusson^{1,3}, Ananya Harsh Jha^{1,3}, Tom Sherborne⁴, Emma Strubell^{1,2}, Jesse Dodge¹, Pradeep Dasigi¹

¹Allen Institute for AI, ²Carnegie Mellon University, ³University of Washington, ⁴Cohere

How can we understand and improve our language models' data mixtures?

Naive, infeasible: train and evaluate models on every possible data recipe

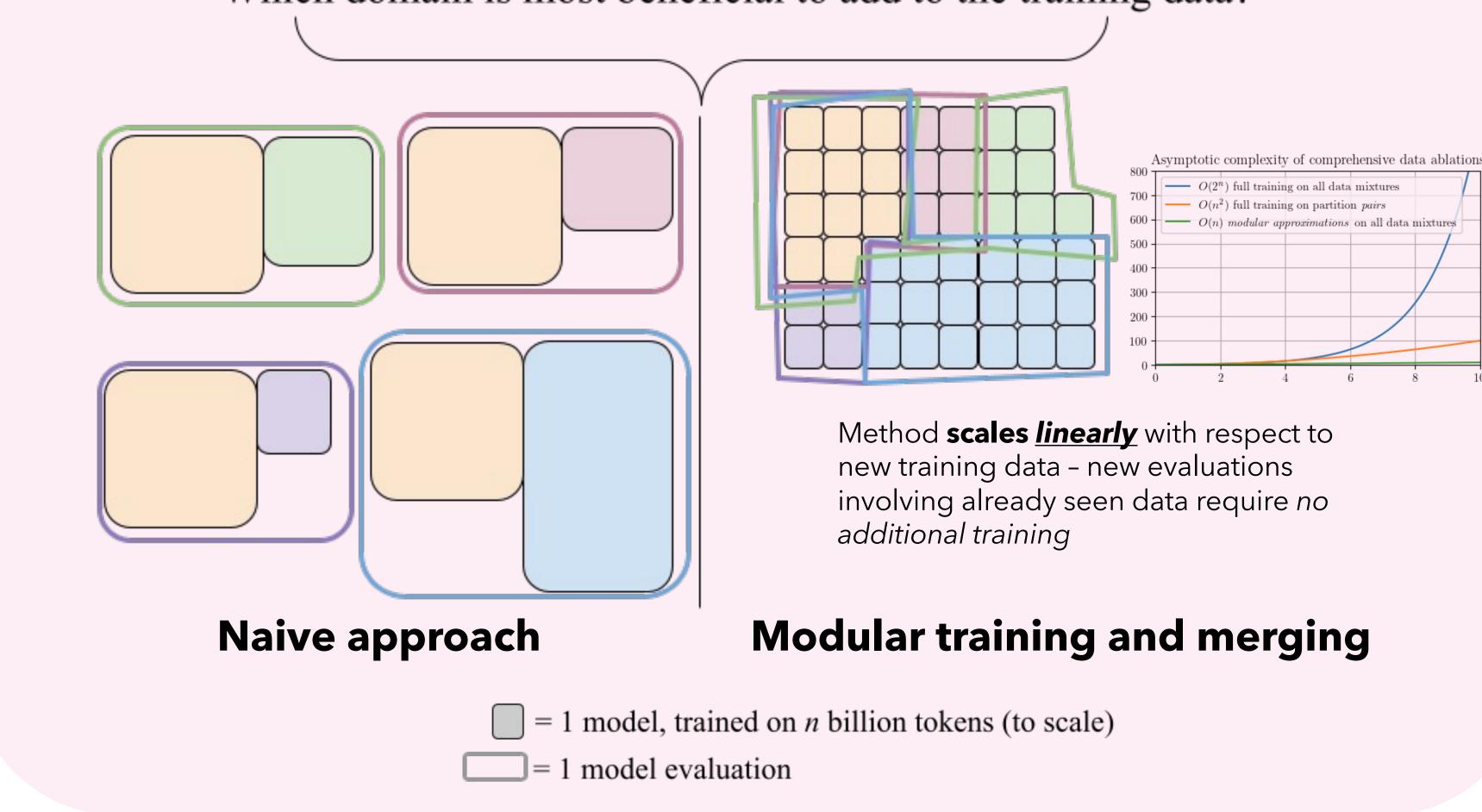


"Which domain is most beneficial to add to the training data?"

Efficient, scalable: Data partitioning, Modular training, Evaluating <u>merged</u> models

Key finding: Evaluations of merged models correlate strongly with evaluations of models trained on combined datasets → we can *reuse* training computation across evaluations

→ we can simulate comprehensive and fine-grained data ablations



Hypothesis:

For training data A, B, C, eval data x:

eval(merge{model(A), model(B), model(C)} | x) \propto eval(model{A + B + C} | x)

Proposed Method

Start with a training corpus with data domains of interest.

1. Further partition / recombine into similarly sized "base units"

2. Train one model on each base unit of data

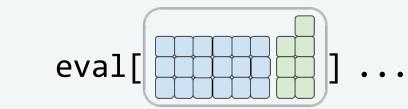
• Use same seed model initialization and amount of training for each model!

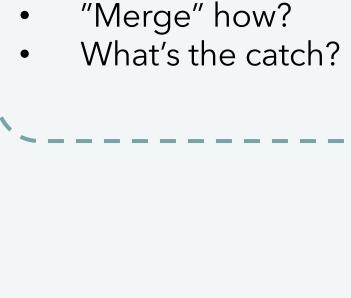
3. Evaluate parameter averages of trained models on arbitrary evaluation domains

eval[eval[

SEQ perplexity

 \rightarrow





How much training?

Ask me about:

model() model() model() model() model()
model() model() model() model() model() ...
model() model() model() model() model()

• What's th

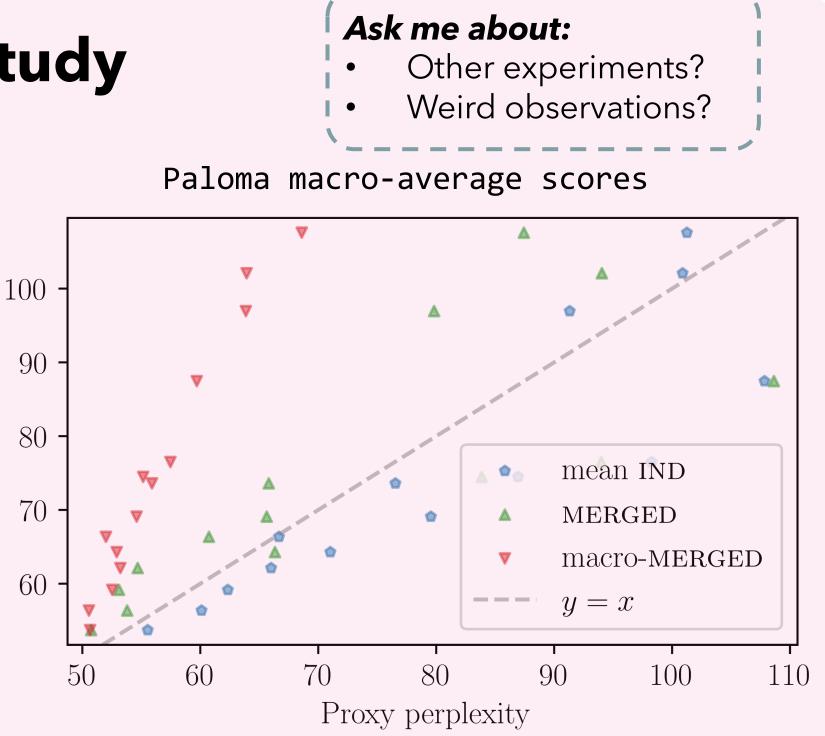
4. Use perplexity scores of evaluations to understand and improve fit to evaluation domains of interest!

eval(merge{ merge{ model() model(

model(__) model(__)

Example : Two S2ORC fields of study

	Average IND scores		MERGED scores		
	MERGED	SEQ	SEQ	macro-	micro-
\mathcal{P}_1	0.844	0.826	0.763	0.929	0.937
\mathcal{P}_2^-	0.909	0.930	0.914	0.959	0.946
${\mathcal P}_1+{\mathcal P}_2$	0.856	0.844	0.755	0.944	0.938
M2D2 S2	0.869	0.908	0.608	0.894	0.918
M2D2 Wiki	0.905	0.886	0.822	0.966	0.858
Wiki-103	0.927	0.885	0.783	0.983	0.867
PTB	0.880	0.835	0.694	0.929	0.773
4chan	0.874	0.883	0.866	0.905	0.785
c4-en	0.905	0.863	0.798	0.985	0.849
mc4-en	0.844	0.836	0.770	0.969	0.829
RedPajama	0.790	0.902	0.838	0.930	0.852
Manosphere	0.917	0.919	0.895	0.976	0.867
Avg (macro)	0.910	0.882	0.790	0.984	0.848



Experimental setting

- 130m and 1.1b decoder-only models
- Continued pre-training on S2ORC, M2D2 Wiki
- Perplexity evaluation on held-out sets + OOD sets from Paloma
- In one data ablation study, fix number of partitions

Future work

- Fine-grained downstream task adaptation?
- 7b models?
- Mergeability when training data is more diverse multi-lingual? + code?