Abstract

Model compression by way of parameter pruning, quantization, or distillation has
recently gained popularity as an approach for reducing the computational
requirements of modern deep neural network models for NLP. Inspired by previous
work suggesting a connection between simpler, more generalizable models and
those that lie within flat basins in the loss landscape, we hypothesize that optimizing
for flat minima should lead to simpler parameterizations and thus more
compressible models. We propose to combine sharpness-aware minimization with
various task-specific model compression methods, including iterative magnitude
pruning, structured pruning with a distillation objective, and post-training dynamic
quantization. In our experiments, we show that optimizing for flat minima
consistently leads to greater compressibility of parameters compared to standard
Adam optimization when fine-tuning BERT models, leading to higher rates of
compression with little to no loss 1n accuracy on the GLUE text classification and
SQuAD question answering benchmarks.

Background
(BOO0): How do we train flat? Sharpness-Aware Minimization (SAM)

Cifar10 A
Cifar100 -
Imagenet -

Finetuning -
SVHN |
F-MNIST

Noisy Cifar -

0 20
Error reduction (%)

40

Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset
/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD
converged. (right) A wide minimum to which the same ResNet trained with SAM converged.

Wt 1 min L3*M (w) + \||w||2 where L3*M(w) £ max Lg(w + €)
s — e €llp<p
\p\ We\ ~ wei
\~* —-n
Foret, Pierre, et al. "Sharpness-aware minimization for
Wady ot —NVL(Waqy) efficiently improving generalization." ICLLR 2021.

(BOI1): How do we compress? Many ways...
e Pruning
o We use unstructured iterative magnitude pruning (IMP); a proportion of individual
parameters 1s pruned repeatedly based on absolute magnitude
o Lottery ticket hypothesis (Frankle and Carbin. 2019): Models are
overparameterized... 3 sparse subnetworks that can be trained to reach the full
model’s accuracy in the same number of steps
o Either w/ or w/o rewinding remaining weights to pre-trained init between iterations
e Distillation
o A smaller student model learns to mimic a teacher model’s outputs
o We use a SOTA method that prunes coarse + fine-grained (CoF1) substructures from
a student model using a distillation objective (Xia et al.. 2022)
e (QQuantization
o Learn/calibrate transformations that map float32 params into smaller (e.g. int8)
representations for inference
o We use a standard PyTorch implementation of Post-Training Dynamic Quantization

Models: pre-trained BERT models (= BERT, ,+ BERTlalrge & RoBERTa,)
Tasks: Text Classification (from GLUE), and Question Answering (SQuAD)

Optimizers: vanilla Adam (Kingma and Ba., 2014) vs. SAM (Foret et al., 2021) (with
Adam base optimizer)

Metrics: accuracy metrics reported by related work at reference sparsity levels

Hyperparameters
e p =0.05 for size of epsilon-neighborhood in SAM
e Matched Chen et al. (2020) for unstructured IMP experiments
o Pruned 10% of weights between each of 10 fine-tuning iterations -> 90% sparsity
o We experiment both with and without rewind to BERT, initialization
o Different: we set Adam w.d. = 0 1n order to remove potential confound of L2 reg.
e Matched Xia et al. (2022) for structured/distillation (CoF1) experiments
o Different: we compare teacher models trained with SAM vs vanilla Adam

RTE

5. 0.65

3
< 060

Full FT accuracy
—}{— SAM BERT-Base

Adam BERT- -Bas!

IMP
e IMP

00 01 02 03

04 05

06 07 08 09

0.9

0.8

0.5

{o.

E 0.4
0.34

—}— SAM BERT Base

0.2

Ref. pearson cor
Full FT pearson c

+— Adam BERT-Base

rrrrrrr
orrelation

MP
MP

Sparsity

(d) STS-B

QQep

00 01 02 03 04 05 06 07 08 09

MRPC

aaaaaa

Full FT accuracy
—}— SAM BERT Base IMP
Adam BERT Base IMP

Unstructured iterative magnitude pruning...

CoLA

0s
%04

0.3

0.6 | e —

021 - Ref. sparsity

0.1 Full FT matthews cor relation

BBBBBBBBBBB
0.0 Adam BERT Base IMP

IMP

00 01 02 03 04 05

(b) MRPC

SST-2

06 07 08 09

—— SAM BERT -Base IMP
Adam BERT -Base IMP

00 01 02 03 04 05 06

Sparsity

(e) SST-2

MNLI

7 08 09

0.91

0.90

0.87 - Ref. sparsit
0.86

0.85

ssssssss

(2) QQP

Sparsity

(h) MNLI

... L4 with...

00 01 02 03 04 05 06 07 08 09

Sparsity

(c) CoLA

QNLI

0.925

j
o 0.825
]
<

0.8001 . Ref sparsity

750 —+— SAM BERT-Base IMP
Adam BERT-Base IMP

00 01 02 03 04 05 06 07 08 09
Sparsity

(f) QNLI

0.9

SQUAD

u
—}— SAM BERT-Base IMP
Adam BERT-Base IMP

00 01 02 03 04 05 06 07 08 09

Figure 2: Individual plots showing sparsity vs. accuracy for GLUE tasks and SQuAD in BERT}, . models
compressed via IMP with rewind to BERT},, . initialization. The vertical lines and gray horizontal bands mark
reference sparsity and "winning ticket" evaluation metric values that were obtained by Chen et al. (2020). The green
horizontal bands mark the initial performance of our full fine-tuned models.

|4 Structured pruning with a distillation objective

0.675

0.650

0.625

0.550

RTE

(RO0): Does SAM help make models more robust to compression?

Yes! Models trained with SAM are more robust to:

Clara Na, Sanket Vaibhav Mehta, Emma Strubell

Language Technologies Institute, Carnegie Mellon University

Experiments (cont'd)

(RO2): How does SAM influence model compressibility?

SAM learns more compressible “winning ticket” structures

0.85
E

v 0.80
0.75
0.70

0.65

: /_‘,\ 0.6 {0
¥’_,—
5 0.850 1 =
0.5
0.825
£}
> £ 041
© o
‘:— o
g g
20775 Zo3
£
sparsity i N\ | ___ | Ref. sp: y 4 -~ Ref. sparsity
0.750
ccccccccccccc f. accuracy = Ref. matthews correlat
Full FT accuracy 0725 Full FT accurac y 9:2 Full FT matthews correlation
—— SAM BERT-Base Std \ ’ —— SAM BERT-Base Std —}— SAM BERT-Base Std
Adam BERT-Base Std 0.700 Adam BERT-Base Std 0.1 Adam BERT-Base Std
00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 00
Sparsity Sparsit y Sparsity
(a) RTE, Standard Pruning (b) MRPC, Standard Pruning (c) CoLA, Standard Pruning
STS-B SST-2 QNLI
0.94 0.92
o \/\ . |
>0.90 >
2
5
]]
< 0881 < 0.86
-~ Ref. sparsity -~ Ref. sparsity -~ Ref. sparsity
Ref, pearson correlation Ref. accuracy 0.84 Ref. accuracy
Full FT pearson correlation 0.861 Full FT accurac y Full FT accuracy
—}— SAM BERT-Base Std —— SAM BERT Base Std —— SAM BERT Base Std
{— Adam BERT-Base Std 0841 Adam BERT-Base Std 0.82 Adam BERT-Base Std

< 0.895

0.890

0.885

0.880

00 01 02 03 04 05 06 07 08 09

(d) STS-B, Standard Pruning

Sparsity

QQrP

(e) SST-2, Standard Pruning

MNLI

Sparsity

(f) QNLI, Standard Pruning

FFFFFF
—— SAM BERT-Base Std
Adam BERT Base Std

0.854
0.84
83

0.824

1
& 0814
0804 Ref. sparsity
Ref. accurac y
Full FT accurac y
—— SAM BERT-Base Std
0.784 Adam BERT-Base Std

(g) QQP, Standard Pruning

4 B
Sparsity

0.900

0.850

® 0.825

Ful fl score
—— SAM BERT-Base Std
Adam BERT Base Std

0.725

00 01 02 03 04 05 06 07 08 09

(h) MNLLI, Standard Pruning

0.4
Sparsity

(i) SQuAD, Standard Pruning

Figure 3: Individual plots showing sparsity vs. accuracy for GLUE tasks and SQuAD in BERT},s. models
compressed with standard pruning (IMP with no rewinding of weights). The vertical lines and gray horizontal bands
mark reference sparsity and "winning ticket" evaluation metric values that were obtained by Chen et al. (2020). The
green horizontal bands mark the initial performance of our full fine-tuned models.

...and |4 without...
...rewind to pre-trained BERT, initialization between iterations

Table 1: Comparison between pruned models obtained

using teacher models fine-tuned with Adam and SAM
optimizers. Numbers reported are means;gqe, (n = 3)
for evaluation metrics on the development set. Com-

pressed models are trained to reach 95% sparsity using
optimal values for A and finetuning learning rate from

Dataset Optim. | Teacher Acc. | Pruned Acc.
SST-2 Adam 92.70.1 90.20.5
(67k) SAM 93.10.6 91.30.3
QNLI Adam 91.50.1 85.90.4
(105k) SAM 91.30.6 86.90.4
QQP Adam 91.00.1 90.00.1
(364k) SAM 91.10.1 90.10.1
MNLI Adam 84.70.4 80.2¢.4
(393k) SAM 85.30.2 80.60.1

D Post-training quantization

Post-Training Quantized Model Performance Comparison

1.0 A

0.9

0

m SAM
Full FT
Adam
Full FT

1 QAT ref

8 - |
0.7 - S
0.6 - I
0.5

MNLI/ QQP/ STS-B/ QNLI/ MRPC/ RTE/ SST-2/ CoLA/ SQUAD/
Acc/Matt corr/ F1/

Acc/ F1/ Pearson/ Acc/ F1/

Acc/

(QAT) (Zafrir et al., 2019).

Xia et al. (2022)’s structured pruning setting.

Figure 4: We compare full fine-tuned and quantized
BERT-base models optimized with SAM and Adam.
Error bars show standard deviations for n = 3. Addi-

tionally, we show that applying a simpler post-training
dynamic quantization technique on a SAM-optimized
model can approach the reported performance of a
model quantized through quantization-aware training

(RQO0.5): Wait! Is SAM just doing the
same thing as LI regularization?

Probably not!

RTE

0.825 1

0.750 1 Ref. accuracy v\

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsit y

(a) RTE, IMP w/ ¢, Regularization
SST-2

SSSSSSSS

QNLI

0.901 —
\ i \h\
L\ R
\ N\
\\ \ \\
\ h\
\
L) \
|~ Ref. spar A\ f. spar: \
L | e s N | .| == Ref accuracy !
Full FT “\\\ cccccccccccccc
—#— SAM BERT-b '\ —#— SAM BERT-base
Adam B '\; Adam BERT-bas
- SAM w/ \ 0.70 1 —4- SAM w/L1 reg
0.82 L~ Adam w/ L1 reg am w/ L1 reg
0.0

(c) SST-2, IMP w/ £; Regularization

Figure 5: Individual plots showing sparsity vs. accuracy for GLUE tasks in ¢;-regularized BERT},,. models
compressed with iterative magnitude pruning (IMP), with regular BERT},, . models for comparison. The vertical
lines and gray horizontal bands mark reference sparsity and "winning ticket" evaluation metric values that were
obtained by Chen et al. (2020). The green horizontal bands mark the initial performance of our full fine-tuned

models.

SSSSSSSS

(d) QNLI, IMP w/ ¢, Regularization

F1 score

! \

RTE
s S {
) i o
A= H T
\
t Ly
,//Jr.f‘.

N X
Ref. sparsit: AN
0.60 Slesparalty N\
Ref. accurac y B\ N
Full FT accurac y \
T ; \
0554 F SAM BERT-base \~\ _
#— Adam BERT-base \.
—& - SAM BERT-large
0.50 A L - Adam BERT-large
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity
(a) RTE, IMP w/ BERT arge
SST-2
094 =t =l 4 i
s
0.92 8 8 B j
0.90 A
>
o
o
3 0.88 4
9]
<
Ref. sparsity
0.86 1 Ref. accurac y
Full FT accurac y H \
0844 SAM BERT-base \
#- Adam BERT-base ; i
—4:- SAM BERT-large !
0.82 4 —L- Adam BERT-large

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

(c) SST-2, IMP w/ BERT 4rge
SQuAD

——

-t -

4| =&

i \
#— Adam BERT-base i \

Ref. sparsity \
Ref. f1 score : \
Full FT f1 score
SAM BERT-base

SAM BERT-large
Adam BERT-large

0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity

(e) SQuAD, IMP w/ BERT 41 ge

0.875

0.850

0.825

0.800

o]

£ 0.775
0.750

0.725

0.700 1

4 BERT-base Ed EdES
i

B Ref.

4 —#— SAM BERT-base
#- Adam BERT-base
1 - SAM BERT-large
L - Adam BERT-large

RN
\
\

Y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sparsity

(b) MRPC, IMP w/ BERT arge

QNLI

0.925 1 =

0.900 4
0.875 4

> 0.850 A

0.800 4
0.775 1

0.750 1

0.825 4

Fu

Il FT accurac y
4~ SAM BERT-base
&~ Adam BERT-base

—L~ SAM BERT-large

L - Adam BERT-large

Sparsity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(d) QNLI, IMP w/ BERTarge

Figure 6

Pro——

4 BERT-large

(RO1): Does SAM benefit compressibility across different model initializations and sizes?
Yes! SAM > vanilla Adam for:

A\
: \\\

Ref. sparsity A\
Ref. accurac y : 3
Full FT accurac y \ \

- SAM BERT-base | B\
Adam BERT base : L A

- SAM RoBERTa-base ; '\4\;
Adam RoBERTa-base

RTE
0.90
P
-
0.80 1 A R ~ R
R \
) g \
0.75 - +, iR 0.85
R,)
S
>0.70 //Q g\ >
® "-/_*“_\M # © 0.80
a ! & A 8 A o
£ 0.65 g \ <
------ Ref. sparsity B \.
0.60 Ref. accurac y R 0.75
! Full FT accurac y \
—4#— SAM BERT-base | —-
0.554 —#— Adam BERT-base . g 8
~R- SAM RoBERTa-base B | 0.704 —R
8 1
0.50 4 R - Adam RoBERTa-base . R
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 0.0
Sparsity

(a) RTE, IMP w/ RoBERTasase

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sparsity

(b) MRPC, IMP w/ RoBERTapase

SST-2 QNLI
0.96 4 }
— A g =R E
] L oo — . = : ; f~< i
0.94 : R Y v : .
1/% —H— 4 | i 0.90 . o
& 8 \z\\
0.92 5 8 ; \
R
- 0.90 - L 0851 i l\
U = \
o o \
= = b } G ¢
J 0.88 A ol \ \
< < t\ \
Ref. sparsity 0.80 Ref. sparsity AR
0.86 4 Ref. accurac y Ref. accurac y x,\
Full FT accurac y A\ Full FT accurac y 1
o0.8a| —F SAM BERT-base N #— SAM BERT-base %
! &#— Adam BERT-base * 0.751 _5- Adam BERT-base \T
~R- SAM RoBERTa-base f —R- SAM RoBERTa-base 7
0.82 1 —R- Adam RoBERTa-base J R - Adam RoBERTa-base
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Sparsity Sparsity
(c) SST-2, IMP w/ RoBERTapase (d) QNLI, IMP w/ RoBERTapqse
SQuUAD
P I, N Figure 7
O A
: i = "k\i\‘\.
0.8 K
B PR
0.7 1 \\ —
\ ‘£ RoBERTa-base |4
w
s 0.61 | \
] |
w \\ \\
- |
% 0.5 - 1\
Ref. sparsity \ B
Ref. f1 score \
g Full FT f1 score \
—#— SAM BERT-base \
0.3 1 —#— Adam BERT-base \
R - SAM RoBERTa-base : }
0.24 ~R- Adam RoBERTa-base ! '
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sparsity

(e) SQUAD, IMP w/ RoBERTa, s,

Dataset Ticket

Optim.

Accuracy

RTE
(60%)

Random
Random
Adam
Adam
SAM
SAM

Adam
SAM
Adam
SAM
Adam
SAM

549+ 1.3
5.4+ 1.6
63.7 £ 0.9
61.7+ 2.4
70.2+1.9
71.8 -

= 1.7

MRPC
(50%)

Random

Random
Adam
Adam
SAM
SAM

Adam
SAM
Adam
SAM
Adam
SAM

70.8 -
70.1 =
84.2 4
89.3 1
89.3 4
89.7 -

- 0.8
- 0.2
- 0.1
- 0.5
s 1.0
- 0.8

Table 2: For RTE and MRPC at their reference sparsity
values, we fine-tune using 1) SAM and 2) Adam opti-
mizers from pre-trained BERT-base initializations using
only the remaining weights based on a) a random mask,
b) an Adam-learned mask, and c) a SAM-learned mask.

when transferring tickets across tasks, fine-tuned

0 indicate where Adam tickets transferred better

the final fine-tuning optimizer.

ter than SAM; Values close to 0 indicate

Key findings

over a given ticket

Figure 8: Heatmaps indicating the absolute difference in
target task performance between SAM and Adam tickets

either SAM (left) or Adam (right) optimizers during
IMP. Values > 0 indicate the extent to which SAM
tickets transferred better than Adam tickets; Values <

SAM. Overall, SAM tickets transfer better regardless of

Figure 9: Heatmaps indicating the absolute difference
in target task performance between SAM and Adam
optimizers during fine-tuning when transferring tickets
across tasks. Values greater than 0 indicate the extent to
which SAM optimizer worked better than Adam; Values
less than O indicate where Adam optimizer worked bet-

SAM-learned tickets transfer better across tasks

SAM vs Adam Ticket Transfer Performance

=
&
(@}
O
(o
. a
with 2
=
O
=
QO v
g =
than 3 E
0 o
£
N
p—)
(7]
[7)]
©
(@]
@)
[@)]
>
X

- 01 0.3
--0.3 0.1
- 00 04
- 0.2 0.2
--04 -0.1
- 05 -0.1
- 0.1 -0.2
- 0210 =0:1
- 0:0F 01

1 [} 1 I 1 | I 1
mnli qgp stsb qgnli mrpc rte sst2 cola Avg

0.9

1.9

0.1

0.6

0.3

0.7

0).5

-0.1

0.6

0.8 pesam 0.0 -0.6
0.1 e -0.1
0.3 0.2 7 | -0.1
0.3 Eit2 I 0.3
-0.7 1.0 B1E8N 0.0
0.1 0.1
0.1 gOfa 0.0 S0:5
-0.5 (1 0.5 iy 0.1
-0.0 | 1.4 B1EON 0.0

Target Task

, W/ SAM Optimizer

1.3
2.4
23
-0.1
-2.7
-3.6
-0.2

0.7

0.6

1.4

0.7

0.6

0.2

1.6

-0.4

-0.1

0.6

5

SAM vs Adam Optimizer Transfer Performance, w/ SAM Ticket

Source Task
rte mrpc qnli stsb qqp mnli

Avg cola sst2
1

Target Task

2068 03 |06 0.1 dixl
04 03 11 -08 -15 18 0.7
06 0.1 05 FO8NN0T . 0.5
02 | -0.0 |01 EO6 n 173
0.2 -0.0 03 -09 i 0.4 B3
05 02 06 01 -1.2 = 0.3
o1 | o KON 02 \ 0.8
0.1 -0.2 -0.1 -0.4 = “ 0.9
03 01 04 -03 -1.8 === 0.9
mlnli q<|:1p st'sb qu1li mlipc rtle sslt2

232
5.9
15,74
-1:8
0.5
-1.4
-1.9
-1.1

0.5

1
cola

=153
1.0
0.5
-0.9
0.4
-0.4
-1.2
-0.5

-0.3

1
Avg

2

(RO3): How does SAM affect compressed model generalization?

SAM vs Adam Ticket Transfer Performance, w/ Adam Optimizer

Source Task
rte mrpc qnli stsb qgqp mnli

SAM vs Adam Optimizer Transfer Performance, w/ Adam Ticket

Source Task
rte mrpc qgnli stsb qgp mnli

Avg cola sst2

Avg cola sst2

- 0.2

0]

- -0.3

- -0.2

--0.2

- -0.3

- 0.2

- -0.1

- -0.1

1
mnli

- 0.7

- 0.2

- 0.2

- -0.3

- 0.4

- -0.3

- 0.2

- -0.1

-O 1

I
mnli

-0.0
0.2
0.0
0.0
01
-0.1
-0.1
0.0
0.0

aap

-0.1
0.4
-0.2
-0.2
0.2
0.1
0.2
-0.1
0.0

qap

o The winning tickets learned by SAM generalize better to other tasks

0.5

0.5

0.1

-0.1

0.2

0.4

0.4

0.1

0.3

0.2 g 0.2

-1.3 1.1 0.8
-0.3 [0.7 0.2
03 02 04 05
0.1 PO N 0.3
0.0 0.2
-0.4 05 KN 0.2
-0.0 [N 0.5
-0.2 [NON T; 0.3

-1.6
-6.3
0.4
0.6
-0.8
1.0
0.6

-0.6

1 1 I 1 I
stsb qgnli mrpc rte sst2 cola

0.1
-0.3
0.4
-0.6
0.2
2
@)l
-0.0

0.0

1
stsb

Target Task

06 m 19
-2.]1 . 1.1 1.6
-0.8 -0.7 '-1.4| 0.8
06 -29 -14 14
-0.1 mssE 0.0 FO:9
-0.0 e 0.7
-0.6 =215 XNl 0.6
-0.0 1 1.0 1.3
-0.5 E2ISHEEN 1.1

I I I
gnli mrpc rte sst2
Target Task

o0 On the other hand, SAM does not always help us optimize a given winning ticket

-0.7
-2.8
-1.0
-0.3
2.4
2.2
10

-0.8

1
cola

0.3
=0:3
-0.1
0.2
0.2
13
0.4
0.0

0.3

Avg

1.6
-0.6
-0.3
1.4
0.3
0.7
0.4
-0.4

-0.6

Avg

Fine-tuning with SAM improves compressibility of BERT models across a variety of settings,
compared to vanilla Adam optimization

Specifically, SAM helps us find winning lottery tickets during iterative magnitude pruning that
even a vanilla Adam optimizer can learn on successfully:

o The structure of a winning ticket learned by SAM 1s more important than the optimization

2.5

2.0

- 1.5

-1.0

- 0.5

-0.0

-—0.5

(DQO0): Whats the catch?

compressed networks
(DQO1): What s next?

modalities?

What role could pre-training with SAM play?

e Standard SAM is slower... bilevel optimization can be costly

e [ottery ticket-style IMP 1s expensive (fine-tuning x #n iterations)

Do these results hold in much larger models? Other architectures? Other types of tasks or

e Hardware does not necessarily support inference or training speedups proportional to size in

SAM works, but what about more efficient alternatives, or different methods of obtaining
flatness (e.g. stochastic weight averaging)?

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2204.00408
https://pytorch.org/blog/quantization-in-practice/#post-training-dynamicweight-only-quantization
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2204.00408
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412

