
(RQ2): How does SAM influence model compressibility?
SAM learns more compressible “winning ticket” structures

(RQ3): How does SAM affect compressed model generalization?
SAM-learned tickets transfer better across tasks

Key findings
● Fine-tuning with SAM improves compressibility of BERT models across a variety of settings, 

compared to vanilla Adam optimization
● Specifically, SAM helps us find winning lottery tickets during iterative magnitude pruning that 

even a vanilla Adam optimizer can learn on successfully:
○ The structure of a winning ticket learned by SAM is more important than the optimization 

over a given ticket
○ The winning tickets learned by SAM generalize better to other tasks
○ On the other hand, SAM does not always help us optimize a given winning ticket

(DQ0): What’s the catch?
● Standard SAM is slower… bilevel optimization can be costly
● Lottery ticket-style IMP is expensive (fine-tuning x n iterations)
● Hardware does not necessarily support inference or training speedups proportional to size in 

compressed networks
(DQ1): What’s next?
● SAM works, but what about more efficient alternatives, or different methods of obtaining 

flatness (e.g. stochastic weight averaging)?
● Do these results hold in much larger models? Other architectures? Other types of tasks or 

modalities?
● What role could pre-training with SAM play?

(RQ0): Does SAM help make models more robust to compression?
Yes! Models trained with SAM are more robust to:

(RQ1): Does SAM benefit compressibility across different model initializations and sizes?
Yes! SAM > vanilla Adam for:

(BQ0): How do we train flat? Sharpness-Aware Minimization (SAM)

(BQ1): How do we compress? Many ways…
● Pruning

○ We use unstructured iterative magnitude pruning (IMP); a proportion of individual 
parameters is pruned repeatedly based on absolute magnitude

○ Lottery ticket hypothesis (Frankle and Carbin, 2019): Models are 
overparameterized… ∃ sparse subnetworks that can be trained to reach the full 
model’s accuracy in the same number of steps

○ Either w/ or w/o rewinding remaining weights to pre-trained init between iterations
● Distillation

○ A smaller student model learns to mimic a teacher model’s outputs
○ We use a SoTA method that prunes coarse + fine-grained (CoFi) substructures from 

a student model using a distillation objective (Xia et al., 2022)
● Quantization

○ Learn/calibrate transformations that map float32 params into smaller (e.g. int8) 
representations for inference

○ We use a standard PyTorch implementation of Post-Training Dynamic Quantization

Models: pre-trained BERT models (🤗 BERTbase, + BERTlarge  & RoBERTabase)
Tasks: Text Classification (from GLUE), and Question Answering (SQuAD)
Optimizers: vanilla Adam (Kingma and Ba., 2014) vs. SAM (Foret et al., 2021) (with 
Adam base optimizer)
Metrics: accuracy metrics reported by related work at reference sparsity levels
Hyperparameters
● ⍴ = 0.05 for size of epsilon-neighborhood in SAM
● Matched Chen et al. (2020) for unstructured IMP experiments

○ Pruned 10% of weights between each of 10 fine-tuning iterations -> 90% sparsity
○ We experiment both with and without rewind to BERTbase initialization
○ Different: we set Adam w.d. = 0 in order to remove potential confound of L2 reg.

● Matched Xia et al. (2022) for structured/distillation (CoFi) experiments
○ Different: we compare teacher models trained with SAM vs vanilla Adam
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Train Flat, Then Compress: Sharpness-Aware Minimization Learns More Compressible Models

Model compression by way of parameter pruning, quantization, or distillation has 
recently gained popularity as an approach for reducing the computational 
requirements of modern deep neural network models for NLP. Inspired by previous 
work suggesting a connection between simpler, more generalizable models and 
those that lie within flat basins in the loss landscape, we hypothesize that optimizing 
for flat minima should lead to simpler parameterizations and thus more 
compressible models. We propose to combine sharpness-aware minimization with 
various task-specific model compression methods, including iterative magnitude 
pruning, structured pruning with a distillation objective, and post-training dynamic 
quantization. In our experiments, we show that optimizing for flat minima 
consistently leads to greater compressibility of parameters compared to standard 
Adam optimization when fine-tuning BERT models, leading to higher rates of 
compression with little to no loss in accuracy on the GLUE text classification and 
SQuAD question answering benchmarks.
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Discussion

Foret, Pierre, et al. "Sharpness-aware minimization for 
efficiently improving generalization." ICLR 2021.

✅ BERT-base ⬆⬆⬆

(RQ0.5): Wait! Is SAM just doing the 
same thing as L1 regularization?

Probably not!

✅ RoBERTa-base ↖✅ BERT-large ↖

✅ Post-training quantization

✅ Structured pruning with a distillation objective

Unstructured iterative magnitude pruning…

… ✅ with… …and ✅ without…
…rewind to pre-trained BERTbase initialization between iterations
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