
(RQ2): How does SAM influence model compressibility?
SAM learns more compressible “winning ticket” structures

(RQ3): How does SAM affect compressed model generalization?
SAM-learned tickets transfer better across tasks

Key findings
● Fine-tuning with SAM improves compressibility of BERT models across a variety of settings,

compared to vanilla Adam optimization
● Specifically, SAM helps us find winning lottery tickets during iterative magnitude pruning that

even a vanilla Adam optimizer can learn on successfully:
○ The structure of a winning ticket learned by SAM is more important than the optimization

over a given ticket
○ The winning tickets learned by SAM generalize better to other tasks
○ On the other hand, SAM does not always help us optimize a given winning ticket

(DQ0): What’s the catch?
● Standard SAM is slower… bilevel optimization can be costly
● Lottery ticket-style IMP is expensive (fine-tuning x n iterations)
● Hardware does not necessarily support inference or training speedups proportional to size in

compressed networks
(DQ1): What’s next?
● SAM works, but what about more efficient alternatives, or different methods of obtaining

flatness (e.g. stochastic weight averaging)?
● Do these results hold in much larger models? Other architectures? Other types of tasks or

modalities?
● What role could pre-training with SAM play?

(RQ0): Does SAM help make models more robust to compression?
Yes! Models trained with SAM are more robust to:

(RQ1): Does SAM benefit compressibility across different model initializations and sizes?
Yes! SAM > vanilla Adam for:

(BQ0): How do we train flat? Sharpness-Aware Minimization (SAM)

(BQ1): How do we compress? Many ways…
● Pruning

○ We use unstructured iterative magnitude pruning (IMP); a proportion of individual
parameters is pruned repeatedly based on absolute magnitude

○ Lottery ticket hypothesis (Frankle and Carbin, 2019): Models are
overparameterized… ∃ sparse subnetworks that can be trained to reach the full
model’s accuracy in the same number of steps

○ Either w/ or w/o rewinding remaining weights to pre-trained init between iterations
● Distillation

○ A smaller student model learns to mimic a teacher model’s outputs
○ We use a SoTA method that prunes coarse + fine-grained (CoFi) substructures from

a student model using a distillation objective (Xia et al., 2022)
● Quantization

○ Learn/calibrate transformations that map float32 params into smaller (e.g. int8)
representations for inference

○ We use a standard PyTorch implementation of Post-Training Dynamic Quantization

Models: pre-trained BERT models (🤗 BERTbase, + BERTlarge & RoBERTabase)
Tasks: Text Classification (from GLUE), and Question Answering (SQuAD)
Optimizers: vanilla Adam (Kingma and Ba., 2014) vs. SAM (Foret et al., 2021) (with
Adam base optimizer)
Metrics: accuracy metrics reported by related work at reference sparsity levels
Hyperparameters
● ⍴ = 0.05 for size of epsilon-neighborhood in SAM
● Matched Chen et al. (2020) for unstructured IMP experiments

○ Pruned 10% of weights between each of 10 fine-tuning iterations -> 90% sparsity
○ We experiment both with and without rewind to BERTbase initialization
○ Different: we set Adam w.d. = 0 in order to remove potential confound of L2 reg.

● Matched Xia et al. (2022) for structured/distillation (CoFi) experiments
○ Different: we compare teacher models trained with SAM vs vanilla Adam

Methods

Background

Experiments (cont’d)ExperimentsAbstract

Train Flat, Then Compress: Sharpness-Aware Minimization Learns More Compressible Models

Model compression by way of parameter pruning, quantization, or distillation has
recently gained popularity as an approach for reducing the computational
requirements of modern deep neural network models for NLP. Inspired by previous
work suggesting a connection between simpler, more generalizable models and
those that lie within flat basins in the loss landscape, we hypothesize that optimizing
for flat minima should lead to simpler parameterizations and thus more
compressible models. We propose to combine sharpness-aware minimization with
various task-specific model compression methods, including iterative magnitude
pruning, structured pruning with a distillation objective, and post-training dynamic
quantization. In our experiments, we show that optimizing for flat minima
consistently leads to greater compressibility of parameters compared to standard
Adam optimization when fine-tuning BERT models, leading to higher rates of
compression with little to no loss in accuracy on the GLUE text classification and
SQuAD question answering benchmarks.

Clara Na, Sanket Vaibhav Mehta, Emma Strubell

Language Technologies Institute, Carnegie Mellon University

Discussion

Foret, Pierre, et al. "Sharpness-aware minimization for
efficiently improving generalization." ICLR 2021.

✅ BERT-base ⬆⬆⬆

(RQ0.5): Wait! Is SAM just doing the
same thing as L1 regularization?

Probably not!

✅ RoBERTa-base ↖✅ BERT-large ↖

✅ Post-training quantization

✅ Structured pruning with a distillation objective

Unstructured iterative magnitude pruning…

… ✅ with… …and ✅ without…
…rewind to pre-trained BERTbase initialization between iterations

2 3

1

4

 5

Figure 6 Figure 7

2

8

9

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2204.00408
https://pytorch.org/blog/quantization-in-practice/#post-training-dynamicweight-only-quantization
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2204.00408
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412

