Abstract

Model compression by way of parameter pruning, quantization, or distillation has
recently gained popularity as an approach for reducing the computational
requirements of modern deep neural network models for NLP. Inspired by previous
work suggesting a connection between simpler, more generalizable models and
those that lie within flat basins in the loss landscape, we hypothesize that optimizing
for flat minima should lead to simpler parameterizations and thus more
compressible models. We propose to combine sharpness-aware minimization with
various task-specific model compression methods, including iterative magnitude
pruning, structured pruning with a distillation objective, and post-training dynamic
quantization. In our experiments, we show that optimizing for flat minima
consistently leads to greater compressibility of parameters compared to standard
Adam optimization when fine-tuning BERT models, leading to higher rates of
compression with little to no loss 1n accuracy on the GLUE text classification and
SQuAD question answering benchmarks.

Background
(BOO0): How do we train flat? Sharpness-Aware Minimization (SAM)
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Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset
/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD
converged. (right) A wide minimum to which the same ResNet trained with SAM converged.
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(BOI1): How do we compress? Many ways...
e Pruning
o We use unstructured iterative magnitude pruning (IMP); a proportion of individual
parameters 1s pruned repeatedly based on absolute magnitude
o Lottery ticket hypothesis (Frankle and Carbin. 2019): Models are
overparameterized... 3 sparse subnetworks that can be trained to reach the full
model’s accuracy in the same number of steps
o Either w/ or w/o rewinding remaining weights to pre-trained init between iterations
e Distillation
o A smaller student model learns to mimic a teacher model’s outputs
o We use a SOTA method that prunes coarse + fine-grained (CoF1) substructures from
a student model using a distillation objective (Xia et al.. 2022)
e (QQuantization
o Learn/calibrate transformations that map float32 params into smaller (e.g. int8)
representations for inference
o We use a standard PyTorch implementation of Post-Training Dynamic Quantization

Models: pre-trained BERT models (= BERT, ,+ BERTlalrge & RoBERTa, )
Tasks: Text Classification (from GLUE), and Question Answering (SQuAD)

Optimizers: vanilla Adam (Kingma and Ba., 2014) vs. SAM (Foret et al., 2021) (with
Adam base optimizer)

Metrics: accuracy metrics reported by related work at reference sparsity levels

Hyperparameters
e p =0.05 for size of epsilon-neighborhood in SAM
e Matched Chen et al. (2020) for unstructured IMP experiments
o Pruned 10% of weights between each of 10 fine-tuning iterations -> 90% sparsity
o We experiment both with and without rewind to BERT, initialization
o Different: we set Adam w.d. = 0 1n order to remove potential confound of L2 reg.
e Matched Xia et al. (2022) for structured/distillation (CoF1) experiments
o Different: we compare teacher models trained with SAM vs vanilla Adam
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Figure 2: Individual plots showing sparsity vs. accuracy for GLUE tasks and SQuAD in BERT}, . models
compressed via IMP with rewind to BERT},, . initialization. The vertical lines and gray horizontal bands mark
reference sparsity and "winning ticket" evaluation metric values that were obtained by Chen et al. (2020). The green
horizontal bands mark the initial performance of our full fine-tuned models.

|4 Structured pruning with a distillation objective

0.675

0.650

0.625

0.550

RTE

(RO0): Does SAM help make models more robust to compression?

Yes! Models trained with SAM are more robust to:

Clara Na, Sanket Vaibhav Mehta, Emma Strubell

Language Technologies Institute, Carnegie Mellon University

Experiments (cont'd)

(RO2): How does SAM influence model compressibility?

SAM learns more compressible “winning ticket” structures
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Figure 3: Individual plots showing sparsity vs. accuracy for GLUE tasks and SQuAD in BERT},s. models
compressed with standard pruning (IMP with no rewinding of weights). The vertical lines and gray horizontal bands
mark reference sparsity and "winning ticket" evaluation metric values that were obtained by Chen et al. (2020). The
green horizontal bands mark the initial performance of our full fine-tuned models.

...and |4 without...
...rewind to pre-trained BERT,  initialization between iterations

Table 1: Comparison between pruned models obtained

using teacher models fine-tuned with Adam and SAM
optimizers. Numbers reported are means;gqe, (n = 3)
for evaluation metrics on the development set. Com-

pressed models are trained to reach 95% sparsity using
optimal values for A and finetuning learning rate from

Dataset Optim. | Teacher Acc. | Pruned Acc.
SST-2 Adam 92.70.1 90.20.5
(67k) SAM 93.10.6 91.30.3
QNLI Adam 91.50.1 85.90.4
(105k) SAM 91.30.6 86.90.4
QQP Adam 91.00.1 90.00.1
(364k) SAM 91.10.1 90.10.1
MNLI Adam 84.70.4 80.2¢.4
(393k) SAM 85.30.2 80.60.1

D Post-training quantization

Post-Training Quantized Model Performance Comparison
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Xia et al. (2022)’s structured pruning setting.

Figure 4: We compare full fine-tuned and quantized
BERT-base models optimized with SAM and Adam.
Error bars show standard deviations for n = 3. Addi-

tionally, we show that applying a simpler post-training
dynamic quantization technique on a SAM-optimized
model can approach the reported performance of a
model quantized through quantization-aware training

(RQO0.5): Wait! Is SAM just doing the
same thing as LI regularization?

Probably not!
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(RO1): Does SAM benefit compressibility across different model initializations and sizes?
Yes! SAM > vanilla Adam for:
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Dataset Ticket

Optim.

Accuracy

RTE
(60%)

Random
Random
Adam
Adam
SAM
SAM

Adam
SAM
Adam
SAM
Adam
SAM

549+ 1.3
5.4+ 1.6
63.7 £ 0.9
61.7+ 2.4
70.2+1.9
71.8 -

= 1.7

MRPC
(50%)

Random

Random
Adam
Adam
SAM
SAM

Adam
SAM
Adam
SAM
Adam
SAM

70.8 -
70.1 =
84.2 4
89.3 1
89.3 4
89.7 -

- 0.8
- 0.2
- 0.1
- 0.5
s 1.0
- 0.8

Table 2: For RTE and MRPC at their reference sparsity
values, we fine-tune using 1) SAM and 2) Adam opti-
mizers from pre-trained BERT-base initializations using
only the remaining weights based on a) a random mask,
b) an Adam-learned mask, and c) a SAM-learned mask.

when transferring tickets across tasks, fine-tuned

0 indicate where Adam tickets transferred better

the final fine-tuning optimizer.

ter than SAM; Values close to 0 indicate

Key findings

over a given ticket

Figure 8: Heatmaps indicating the absolute difference in
target task performance between SAM and Adam tickets

either SAM (left) or Adam (right) optimizers during
IMP. Values > 0 indicate the extent to which SAM
tickets transferred better than Adam tickets; Values <

SAM. Overall, SAM tickets transfer better regardless of

Figure 9: Heatmaps indicating the absolute difference
in target task performance between SAM and Adam
optimizers during fine-tuning when transferring tickets
across tasks. Values greater than 0 indicate the extent to
which SAM optimizer worked better than Adam; Values
less than O indicate where Adam optimizer worked bet-

SAM-learned tickets transfer better across tasks

SAM vs Adam Ticket Transfer Performance
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(RO3): How does SAM affect compressed model generalization?
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o The winning tickets learned by SAM generalize better to other tasks
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Fine-tuning with SAM improves compressibility of BERT models across a variety of settings,
compared to vanilla Adam optimization

Specifically, SAM helps us find winning lottery tickets during iterative magnitude pruning that
even a vanilla Adam optimizer can learn on successfully:

o The structure of a winning ticket learned by SAM 1s more important than the optimization
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(DQO0): Whats the catch?

compressed networks
(DQO1): What s next?

modalities?

What role could pre-training with SAM play?

e Standard SAM is slower... bilevel optimization can be costly

e [ ottery ticket-style IMP 1s expensive (fine-tuning x #n iterations)

Do these results hold in much larger models? Other architectures? Other types of tasks or

e Hardware does not necessarily support inference or training speedups proportional to size in

SAM works, but what about more efficient alternatives, or different methods of obtaining
flatness (e.g. stochastic weight averaging)?
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